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INFN, Sezione di Milano–Bicocca,

Piazza della Scienza 3, I-20126 Milano, Italy

E-mail: silvia.penati@mib.infn.it, marco.pirrone@mib.infn.it,

carloalberto.ratti@mib.infn.it

Abstract: We study the embedding of spacetime filling D7-branes in β-deformed

backgrounds which, according to the AdS/CFT dictionary, corresponds to flavoring β-

deformed N = 4 super Yang-Mills. We consider supersymmetric and more general non-

supersymmetric three parameter deformations. The equations of motion for quadratic

fluctuations of a probe D7-brane wrapped on a deformed three-sphere exhibit a non-trivial

coupling between scalar and vector modes induced by the deformation. Nevertheless, we
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a mass gap and a Zeeman-like splitting occurs. Finally we propose the action for the dual
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1. Introduction

One of the main challenges of the elementary particle theoretical physics is the understand-

ing of the low energy regime of confining theories, primarily QCD. Progress in this direction

is expected in the context of AdS/CFT correspondence [1] which allows for a dual descrip-

tion of Yang-Mills theories at strong coupling in terms of a perturbative string/supergravity

theory.

In this respect, a quite recent progress concerns the generalization of the AdS/CFT cor-

respondence to include matter in the fundamental representation of the gauge group [2, 3].

The holographic description of a 4D supersymmetric Yang-Mills theory with fundamental

matter can be obtained by considering a system of intersecting D3-D7 branes. Precisely,

the near horizon geometry of a system of N D3-branes in the presence of Nf spacetime-

filling D7-branes, in the large N limit and Nf fixed, gives the dual description of a N = 4

SU(N) SYM theory living on the D3-branes with supersymmetry broken to N = 2 by

Nf hypermultiplets in the fundamental representation of SU(N). The field content of the
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hypermultiplets is given by excitations of fundamental strings stretching between D3 and

D7-branes.

When the D3 and the D7-branes are separated along the mutual orthogonal directions

the hypermultiplets acquire a mass which is proportional to the distance between the

branes. For coincident branes (vanishing masses) the N = 2 theory is superconformal

invariant.

As proposed in [3] (see also [4]), excitations of fundamental strings with both ends on

the D7-branes represent mesonic states of the corresponding SYM field theory. Studying

these fluctuations allows for determining the mass spectrum of the mesonic excitations.

The spectrum turns out to be discrete with a mass gap [5].

Since the original proposal of inserting D7-branes in the standard AdS5×S5 geometry,

a lot of work has been done in the direction of finding generalizations to less supersym-

metric and/or non-conformal backgrounds. In particular, flavors and meson spectra on the

conifold and in the Klebanov-Strassler model have been studied in [6]. The Maldacena-

Nunez background has been considered in [7], the class of metrics of the form AdS5× Y p,q

and AdS5 × La,b,c in [8], while for the Polchinski-Strassler set-up see [9]. Supersymmetric

embeddings of D-branes and their fluctuations in non-commutative theories have been in-

vestigated in [10]. Further generalizations concern other stable brane systems [11, 12]. Chi-

ral symmetry breaking and theories at finite temperature have been first studied in [13, 14].

Moreover, several attempts have been devoted to going beyond the probe approximation

and studying full back-reacted (super)gravity solutions [15]. Further interesting results can

be found in [16 – 20].

Among the formulations of the AdS/CFT correspondence with less supersymmetry,

the one-parameter Lunin-Maldacena (LM) background [21] corresponding to N = 1 β-

deformed SYM theories plays an interesting role, being the field theory and the dual string

geometry explicitly known. The gravitational background is AdS5 × S̃5 where S̃5 is the

β-deformed five sphere obtained by performing a TsT transformation on a 2-torus inside

the S5 of the original background. This operation breaks the SO(6) symmetry group of

the five sphere down to U(1) × U(1) × U(1). On the field theory side, this deformation

corresponds to promoting the ordinary products among the fields in the N = 4 action to a

∗-product which depends on the charges of the fields under two U(1)’s and allowing for the

chiral coupling constant to be different from the gauge coupling. Consistently with what

happens on the string side, these operations break N = 4 to N = 1 supersymmetry, as the

third U(1) (the one not involved in the ∗-product) corresponds to the R-symmetry. Further

generalizations [22] lead to a dual correspondence between a non-supersymmetric Yang-

Mills theory and a deformed LM background depending on three different real parameters

γ1, γ2 and γ3.
1

All these models are (super)conformal invariant since the string geometry still has an

AdS factor. As such they cannot be used to give a realistic description of the RG flow of

a gauge theory towards a confining phase. However, it is interesting to investigate what

1We use the standard convention to name real deformation parameters with γ.

– 2 –



J
H
E
P
0
4
(
2
0
0
8
)
0
3
7

happens if we insert D7-branes in these deformed backgrounds.2 In particular, we expect

to find a parametric dependence of the mesonic spectrum on γi’s which could then be used

to fine-tune the results.

In what follows we accomplish this project by studying the effects of inserting D7-

branes in the more general non-supersymmetric LM-Frolov background. In the probe

approximation (Nf ≪ N), we first study the stability of the D3-D7 configuration. We

find that, independently of the value of the deformation parameters, an embedding can be

found which is stable, BPS and in the γ1 = γ2 = γ3 case it is also supersymmetric.

We then study fluctuations of a D7-brane around the static embedding which corre-

spond to scalar and vector mesons of the dual field theory. We consider the equations

of motion for the tower of Kaluza-Klein modes arising from the compactification of the

D7-brane on a deformed three-sphere. The background deformation induces a non-trivial

coupling between scalar and vector modes. However, with a suitable field redefinition, we

manage to simplify the equations and solve them analytically, so determining the mass

spectrum exactly.

The effects of the deformation on the mesonic mass spectrum and on the correspond-

ing KK modes are the following: i) As in the undeformed case the mass spectrum is

discrete and with a mass gap, but it acquires a non-trivial dependence on the deformation

parameters. Precisely, it depends on the parameters γ2, γ3 which are associated to TsT

transformations along the tori with a direction orthogonal to the probe branes, whereas

the parameter γ1 associated to the deformation along the torus inside the D7 worldvolume

never enters the equations of motion for quadratic fluctuations and does not affect the mass

spectrum. ii) Since the deformation breaks SO(4) (the isomorphisms of the three-sphere) to

U(1)×U(1) a Zeeman-like effect occurs and the masses exhibit a non-trivial dependence on

the (m2,m3) quantum numbers associated to the two U(1)’s. The dependence is through

the linear combination (γ2m3 − γ3m2)
2 so that the mass eigenvalues are smoothly related

to the ones of the undeformed case by sending γi → 0. iii) The corresponding eigenstates

are classified according to their SO(4) and U(1) × U(1) quantum numbers. Expanding in

vector and scalar harmonics on the three-sphere, we find Type I elementary fluctuations3

in the ( l∓1
2 , l±1

2 )(m2,m3) representations and Type II, Type III and scalar modes in the

( l
2 ,

l
2 )(m2,m3). For a given l the total number of degrees of freedom is 8(l + 1)2 as in the

undeformed theory but, given the degeneracy breaking, they split among different eigen-

values. For any given triplet (l,m2,m3) we compute the degeneracy of the corresponding

mass eigenvalue. We find that the splitting is different according to the choice γ2 6= γ3

or γ2 = γ3 (which includes the N = 1 supersymmetric deformation). In the last case the

spectrum exhibits a mass degeneracy between scalars and vectors which is remnant of the

N = 2 supersymmetric, undeformed case.

The paper is organized as follows. In section 2 we review the three-parameter de-

formation of the AdS5 × S5 by using a set of coordinates suitable for the introduction of

D7-branes. In section 3 we study the static embedding of a D7-brane and discuss its sta-

2Several works in the literature are devoted to the study of D-branes in this context [23 – 29].
3We use the classification of [5].
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bility. In the γ1 = γ2 = γ3 case, using the results of [28] we argue that our configuration

is supersymmetric. We then find the equations of motion for the bosonic fluctuations of a

D7-brane in section 4 and solve them analytically in section 5 determining the exact mass

spectrum. In section 6 we discuss the properties of the spectrum and analyze in detail

the splitting of the mass levels and the corresponding degeneracy. Finally, in section 7 we

formulate the field theory dual to our configuration, whereas our conclusions, comments

and perspectives are collected in section 8.

2. Generalities on the three-parameter deformation of AdS5 × S5

Following [21, 22] we consider a type IIB supergravity background obtained as a three-

parameter deformation of AdS5 × S5. It is realized by three TsT transformations (T

duality — angle shift — T duality) along three tori inside S5 and driven by three different

real parameters γi. The corresponding metric is usually written in terms of radial/toroidal

coordinates (ρi, φi), i = 1, 2, 3,
∑

i ρ
2
i = 1 on the deformed sphere, and in string frame it

reads (we set α′ = 1)

ds2 =
u2

R2
ηµνdx

µdxν +
R2

u2
du2 +R2





∑

i

(dρ2
i +Gρ2

i dφ
2
i ) +Gρ2

1ρ
2
2ρ

2
3

(

∑

i

γ̂idφi

)2




G−1 = 1 + γ̂2
3ρ

2
1ρ

2
2 + γ̂2

2ρ
2
3ρ

2
1 + γ̂2

1ρ
2
2ρ

2
3 γ̂i ≡ R2γi (2.1)

where R is the AdS5 and S5 radius. A further change of coordinates may be useful (we use

the notation cξ ≡ cos ξ, sξ ≡ sin ξ for any angle ξ)

ρ1 = cα , ρ2 = sαcθ , ρ3 = sαsθ (2.2)

leading to the description of this background in terms of Minkowski coordinates xµ plus

the AdS5 coordinate u and five angular coordinates (α, θ, φ1, φ2, φ3). The deformations

correspond to TsT transformations along the three tori (φ1, φ2), (φ1, φ3), (φ2, φ3) and are

parametrized by constants γ̂3, γ̂2 and γ̂1 respectively.

This background is non-supersymmetric and it is dual to a non-supersymmetric but

marginal deformation of N = 4 SYM (the deformation has to be exactly marginal since

the AdS factor is not affected by TsT ’s). The N = 1 supersymmetric background of [21]

can be recovered by setting γ̂1 = γ̂2 = γ̂3.

With the aim of embedding D7-branes in this background we find more convenient to

express the metric in terms of a slightly different set of coordinates. We describe the six

dimensional internal space in terms of Xm ≡ {ρ, θ, φ2, φ3,X5,X6} which are mapped into

the previous set of coordinates by the change of variables

ρ = u sα , X5 = u cα cφ1
, X6 = u cα sφ1

(2.3)

In string frame and still setting α′ = 1, we then have

ds2 =
u2

R2
ηµνdx

µdxν +
R2

u2
GmndX

mdXn (2.4)
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where the non-vanishing components of the metric Gmn are

Gρρ = 1 Gθθ = ρ2

Gφ2φ2
= G

(

1 + γ̂2
2ρ

2
1ρ

2
3

)

ρ2
2 u

2 Gφ3φ3
= G

(

1 + γ̂2
3ρ

2
1ρ

2
2

)

ρ2
3 u

2

Gφ2φ3
= G γ̂2γ̂3 ρ

2
1ρ

2
2ρ

2
3 u

2

Gφ2X5
= −G γ̂1γ̂2 ρ

2
2ρ

2
3X6 Gφ2X6

= G γ̂1γ̂2 ρ
2
2ρ

2
3X5

Gφ3X5
= −G γ̂1γ̂3 ρ

2
2ρ

2
3X6 Gφ3X6

= G γ̂1γ̂3 ρ
2
2ρ

2
3X5

GX5X5
= 1− X2

6

u2ρ2
1

[

1−G
(

1 + γ̂2
1ρ

2
2ρ

2
3

)]

GX6X6
= 1− X2

5

u2ρ2
1

[

1−G
(

1 + γ̂2
1ρ

2
2ρ

2
3

)]

GX5X6
=
X5X6

u2ρ2
1

[

1−G
(

1 + γ̂2
1ρ

2
2ρ

2
3

)]

(2.5)

where G is given in (2.1) and now

ρ2
1 =

X2
5 +X2

6

u2
, ρ2

2 =
ρ2c2θ
u2

, ρ2
3 =

ρ2s2θ
u2

(2.6)

The constraint
∑3

i=1 ρ
2
i = 1 is traded with the condition u2 = ρ2 +X2

5 +X2
6 .

The LM-Frolov supergravity solution is characterized by a non-constant dilaton

e2φ = e2φ0G (2.7)

where φ0 is the constant dilaton of the undeformed background related to the AdS radius

by R4 = 4πeφ0N ≡ λ. For real deformation parameters γ̂i the axion field C0 is a constant

and can be set to zero.

This background carries also a non-vanishing NS-NS two-form and R-R forms as well.

In our set of coordinates they read

B =
R2G

u2

(

(X5dX6 −X6dX5) ∧ (γ̂3ρ
2
2dφ2 − γ̂2ρ

2
3dφ3) + γ̂1ρ

2
2ρ

2
3 u

2dφ2 ∧ dφ3

)

C2 = 4R2e−φ0ω1 ∧
(

γ̂1
X5dX6 −X6dX5

u2ρ2
1

+ γ̂2dφ2 + γ̂3dφ3

)

, ω1 =
ρ4

4u4
cθsθdθ

C4 = 4R4e−φ0

(

u4

4R8
dt ∧ dx1 ∧ dx2 ∧ dx3 −Gω1 ∧

X5dX6 −X6dX5

u2ρ2
1

∧ dφ2 ∧ dφ3

)

(2.8)

The corresponding field strengths are given by the general prescription F̃q = dCq−1− dB ∧
Cq−3.

The missing forms of higher degrees can be found by applying the ten-dimensional

Hodge duality operator

F̃7 = − ⋆ F̃3, F̃9 = ⋆F̃1 (2.9)

From the first identity and using the equation of motion for C2

d(⋆F̃3) = dC4 ∧ dB, (2.10)
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it is easy to see that d(C6 − B ∧ C4) = 0, i.e. C6 − B ∧ C4 = dX for an arbitrary 5-form

X. We make the gauge choice

C6 = C4 ∧B (2.11)

Finally, from the second identity in (2.9), by using (2.11) and taking into account that

B ∧B = 0 and C0 = 0 we find F̃9 = dC8 = 0. Therefore, in what follows we set C8 = 0.

The deformed background written in terms of the original internal coordinates

(ρ, α, θ, φ1, φ2, φ3) has a manifest invariance under constant shifts of the toroidal coor-

dinates (φ1, φ2, φ3) which correspond to three U(1) symmetries. With our choice of coor-

dinates the invariance under φ2,3 → φ2,3 + const. is still manifest, whereas the third U(1)

associated to shifts of φ1 is realized as a rotation in the (X5,X6) plane.

3. The embedding of D7-branes

We now study the embedding of Nf ≪ N D7-branes in the deformed background described

in the previous section. For simplicity we consider the case of a single spacetime filling

D7-brane (Nf = 1) which extends in the internal directions (ρ, θ, φ2, φ3) (we work in the

static gauge where the worldvolume coordinates σa of the brane are identified with the

appropriate ten dimensional coordinates). The X5,X6 coordinates parametrize the mutual

orthogonal directions of the intersecting system of N sources D3-branes and one flavor

D7-brane.

The dynamics of bosonic degrees of freedom of the D7-brane is described by the action

S = SDBI + SWZ (3.1)

where SDBI is the abelian Dirac-Born-Infeld term (in what follows latin labels a, b, . . . stand

for worldvolume components)

SDBI = −T7

∫

Σ8

d8σ e−φ
√

−det(gab + Fab) (3.2)

whereas SWZ is the Wess-Zumino term describing the coupling of the brane to the R-R

potentials

SWZ = T7

∫

Σ8

{

(2πα′)3

6
P [C2] ∧ F ∧ F ∧ F +

(2πα′)2

2
P [C4 − C2 ∧B] ∧ F ∧ F

}

(3.3)

Here gab ≡ GMN∂aX
M∂bX

N is the pull-back of the ten-dimensional spacetime met-

ric (2.4), (2.5) on the worldvolume Σ8 and T7 is the D7-brane tension. The U(1) world-

volume gauge field strength Fab enters the action through the modified field strength

Fab = 2πα′Fab − bab, where bab is the pull-back of the target NS-NS two-form poten-

tial in (2.8), bab = BMN∂aX
M∂bX

N . Moreover, in (3.3) P [. . .] denotes the pull-back of the

R-R forms on Σ8.

We look for ground state configurations of the D7-brane. These are static solutions of

the equations of motion for X5,X6 and εF (ε ≡ 2πα′) derived from (3.1).

– 6 –



J
H
E
P
0
4
(
2
0
0
8
)
0
3
7

In the ordinary AdS5×S5 background static embeddings (see for example [13]) can be

found by setting X6 = 0, F = 0 and X5 = X5(ρ) satisfying

d

dρ

(

ρ3

√

1 + (∂ρX5)2
dX5

dρ

)

= 0 (3.4)

with asymptotic behavior X5(ρ) = L + c
ρ2 for ρ ≫ 1. The mass solution X5 = L is the

only well-behaved solution and corresponds to fixing the location of the D7-brane in the

56-plane at X2
5 +X2

6 = L2. This is a BPS configuration since the energy density turns out

to be independent of L [30, 12].

In the deformed background we consider an embedding of the form

XM = (xµ, ρ, θ, φ2, φ3,X5(ρ),X6(ρ)) , F = F (XM ) (3.5)

where, as in the ordinary case, we allow for a non-trivial dependence of the orthogonal

directions on the non-compact internal coordinate ρ. Solving the equations of motion for

X5,X6 and F in the present case requires a bit of care since the non-vanishing NS-NS

2-form in (2.8) can act as a source for the field strength εF .

We expand the action (3.1) up to second order in εF . The WZ action is simply

SWZ =
T7

2

∫

Σ8

P [C4 − C2 ∧B] ∧ εF ∧ εF (3.6)

whereas the expansion of SDBI gives

LDBI = −T7

√

−det(g − b+ εF )√
G

= −T7

√

−det(g − b)√
G

√

det(1 + Y )

= −T7 ρ
3sθcθ

√

Ω2

{

1 +
1

2
Tr(Y )− 1

4
Tr(Y 2) +

1

8
[Tr(Y )]2 + · · ·

}

(3.7)

where we have defined

Y ≡ (g − b)−1 εF

Ω2 ≡ 1 + (∂ρX5)
2 + (∂ρX6)

2 (3.8)

and set eφ0 ≡ 1.

The source for εF comes from the term

1

2
Tr(Y ) =

ε

R2Ω2
[(X5 ∂ρX6 −X6 ∂ρX5)(γ̂2 Fρφ3

− γ̂3 Fρφ2
)− γ̂1Ω2 Fφ2φ3

] (3.9)

In the abelian case the last term is a total derivative and, once integrated on the world-

volume of the brane, it cancels. We are left with the first term which gives a non-trivial

coupling between the scalars and the vectors. We note that these couplings are proportional

to the deformation parameters and disappear for γ̂i = 0, consistently with the undeformed

case.

– 7 –
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Since all the F components except Fρφ2
and Fρφ3

satisfy homogeneous equations we

can set them to zero and concentrate on the system of coupled equations of motion for

X5,X6, Fρφ2
and Fρφ3

. It is easy to realize that a solution is still given by X6 = 0,

Fρφ2
= Fρφ3

= 0, whereas X5(ρ) satisfies eq. (3.4) and can be chosen as X5 = L.

Therefore, even in the deformed case, the ground state of the probe brane is given by a

static location at X2
5 +X2

6 = L2 with no F flux and absence of non-trivial quark condensate.

The choice X5 = L and X6 = 0 breaks the rotational invariance in the (X5,X6) plane.

This configuration is stable (BPS). In fact, the corresponding action

S = −T7

∫

Σ8

d8σρ3sθcθ (3.10)

coincides with the one of the undeformed case and satisfies the no-force condition [30, 12].

Setting X2
5 +X2

6 = L2, the induced metric on the D7-brane reads

ds2I ≡ gab dX
adXb

=
L2 + ρ2

R2

(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

+
R2

L2 + ρ2
(dρ2 + ρ2dθ2)

+
R2Gρ2

(L2 + ρ2)

[

c2θdφ
2
2 + s2θdφ

2
3 +

ρ2L2c2θs
2
θ(γ̂2dφ2 + γ̂3dφ3)

2

(L2 + ρ2)2

]

(3.11)

where G in (2.1) takes the explicit form

G =
(L2 + ρ2)2

(L2 + ρ2)2 + γ̂2
1ρ

4s2θc
2
θ + γ̂2

2L
2ρ2s2θ + γ̂2

3L
2ρ2c2θ

(3.12)

We note that, due to the particular embedding we have realized, the parameter γ̂1

associated to the TsT transformation on the (φ2, φ3) torus inside the D7 worldvolume

enters the metric differently from γ̂2,3 which are instead associated to deformations on tori

with one parallel and one orthogonal direction to the probe.

The different role played by γ̂1 respect to (γ̂2, γ̂3) can be also understood by looking

at the conformal case (L = 0) or the UV limit (ρ → ∞) of the theory. In both cases

the dependence on (γ̂2, γ̂3) disappears and the worldvolume metric reduces to the one for

AdS5 × S̃3 where S̃3 is the deformed three-sphere with metric

ds2
S̃3

R2
= dθ2 +G(c2θdφ

2
2 + s2θdφ

2
3) , G =

1

1 + γ̂2
1c

2
θs

2
θ

(3.13)

Instead, for ρ finite and L 6= 0 the AdS5 factor is lost, the theory is no longer conformal

and a non-trivial dependence on all the deformation parameters appears.

The particular probe brane configuration we have chosen is smoothly related to the

one of the undeformed case. In fact, sending γ̂i → 0 we recover the usual Karch-Katz [2]

picture of flavor branes in AdS5 × S5. As we have just proved, the stability of the D3-D7

system survives the deformation.

We have embedded flavor D7-branes in a deformed background. When the D7-brane

is spacetime filling and wraps the (φ2, φ3) torus the configuration is stable and no world-

volume flux is turned on. Alternatively, we could have started with a configuration of

– 8 –
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D7-branes in the undeformed AdS5 × S5 background and perform the three TsT transfor-

mations as a second step. If the D7-branes were to be placed along the same directions as

before, we would obtain exactly the same configuration of stable D7-branes in the deformed

background with no flux turned on. In fact, along the directions (φ1, φ2, φ3) affected by

TsT transformations the probe branes have Dirichlet-Neumann-Neumann (DNN) bound-

ary conditions. Considering the proposal in [25] and according to the analysis of [27] a

DNN configuration with no flux is mapped into the same configuration, whatever is the

TsT transformation we perform. Therefore, for the particular embedding we are analyzing

the two operations i) Adding a probe to the deformed background and ii) Performing a

TsT transformation on the undeformed brane scenario are equivalent processes. The sta-

bility of our brane configuration for any value of the deformation parameters then follows

from the fact that TsT transformations do not affect the BPS nature of the original brane

system [21] (see also [26]).

It is worth stressing that the possibility of applying equivalently prescriptions i) or ii) is

peculiar of the particular brane configuration we have chosen. Had we considered different

embeddings, the two procedures wouldn’t had led necessarily to equivalent settings [25, 27].

Furthermore, the stability of the configuration would have become questionable.

When the deformation parameters γ̂i are all equal the AdS5 × S̃5 background has

N = 1 supersymmetry. The question is whether our D7-brane embedding preserves super-

symmetry. The standard way of finding supersymmetric configurations is to look at the

κ-symmetry condition of the probes. However, since the β-deformed background can be de-

scribed by an SU(2) structure manifold, it is more convenient to work using the formalism

of G-structures [31] and Generalized Complex Geometry (GCG) [32]. In this framework

the supersymmetry conditions for D-branes probing SU(2) structure manifolds have been

established in [28]. For spacetime filling D7-branes a class of supersymmetric embeddings

is given by z1 ≡ X5 + iX6 = L, with z2 ≡ X1 + iX2 and z3 ≡ X3 + iX4 arbitrarily fixed

and no worldvolume flux turned on. This embeddings break one of the U(1) global sym-

metries. Since our configuration belongs to this class we conclude that our embedding is

supersymmetric.

4. Probe fluctuations

As proposed in [3, 4] D7-brane fluctuations around its ground state are dual to color singlets

which may be interpreted as describing mesonic states of the four dimensional gauge theory.

The mass spectrum of the mesons is given by the Kaluza-Klein spectrum of states which

originate from the compactification of the D7-brane on the internal submanifold. In the

ordinary undeformed scenario the spectrum is discrete and with a mass gap [5].

Our main purpose is to investigate probe fluctuations in the deformed background.

A generic vibration of the brane around its ground state can be described by

X5 = L+ εχ(σa) , X6 = εϕ(σa) (4.1)

together with a non-trivial flux εFab = ε(∂aAb − ∂bAa). The fluctuations are functions of

the worldvolume coordinates σa and ε is a small perturbation parameter.
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We expand the action of the probe brane in powers of the small parameter

S = SDBI + SWZ =

∫

Σ8

d8σ{L0 + εL1 + ε2L2 + · · · } (4.2)

and consider terms up to the quadratic order in ε.

We first concentrate on the DBI term

LDBI = −T7
1√
G

√

−det(g − b+ εF ) (4.3)

where we have written the dilaton field as in (2.7) with eφ0 ≡ 1.

We expand the various terms by writing

g = g(0) + εg(1) + ε2g(2) , b = b(0) + εb(1) + ε2b(2)

1√
G

= G(0) + εG(1) + ε2G(2) (4.4)

Therefore, the determinant can be written as

√

−det(g−b+εF ) =
√

−det
(

g(0) − b(0)
)
√

det(1 + Y )

=
√

−det
(

g(0) − b(0)
)

[

1+
1

2
Tr(Y )− 1

4
Tr(Y 2)+

1

8
[Tr(Y )]2 + · · ·

]

(4.5)

where the matrix Y is given by

Y =
(

g(0) − b(0)
)−1 [

ε
(

g(1) − b(1) + F
)

+ ε2
(

g(2) − b(2)
)

+ · · ·
]

(4.6)

At the lowest order the contribution g(0) is easily read from (3.11), whereas for the pull-back

of B from eq. (2.8) we find that the only non-vanishing component is b
(0)
φ2φ3

= γ̂1R
2Gρ2

2ρ
2
3.

It is convenient to introduce the undeformed induced metric

G = diag

(

−L
2 + ρ2

R2
,
L2 + ρ2

R2
,
L2 + ρ2

R2
,
L2 + ρ2

R2
,

R2

L2 + ρ2
,
R2ρ2

L2 + ρ2
,
R2ρ2c2θ
L2 + ρ2

,
R2ρ2s2θ
L2 + ρ2

)

(4.7)

the auxiliary metric C defined by

dŝ2 ≡ Cabdσ
adσb

=
L2 + ρ2

R2

(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

+
R2

L2 + ρ2
(dρ2 + ρ2dθ2)

+
R2Ĝρ2

L2 + ρ2

[

c2θdφ
2
2 + s2θdφ

2
3 +

ρ2L2c2θs
2
θ(γ̂2dφ2 + γ̂3dφ3)

2

(L2 + ρ2)2

]

(4.8)

with

Ĝ =
(L2 + ρ2)2

(L2 + ρ2)2 + γ̂2
2L

2ρ2s2θ + γ̂2
3L

2ρ2c2θ
(4.9)
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and two deformation matrices T and J given by

T φ2φ2 = γ̂2
3 T φ3φ3 = γ̂2

2 T φ2φ3 = T φ3φ2 = −γ̂2γ̂3

J φ2φ2 = 0 J φ3φ3 = 0 J φ2φ3 = −J φ3φ2 = γ1 (4.10)

The metric C is nothing but the induced metric (3.11) evaluated at γ̂1 = 0. Its inverse can

be expressed as

C−1 = G−1 +
L2

R2(L2 + ρ2)
T (4.11)

It turns out that the matrix
(

g(0) − b(0)
)−1

in (4.6) can be written as

(

g(0) − b(0)
)−1

= C−1 + J = G−1 +
L2

R2(L2 + ρ2)
T + J (4.12)

Since the whole dependence on the deformation parameters is encoded in T and J , the

γ̂i → 0 limit is easily understood.

Now a long but straightforward calculation allows to determine the first order correc-

tions g(1), b(1), G(1) as well as the second order ones g(2), b(2), G(2). Inserting in LDBI we

eventually find

L(0)
DBI = −T7ρ

3cθsθ

L(1)
DBI = T7ρ

3cθsθγ̂1Fφ2φ3
/R2

L(2)
DBI = −T7ρ

3cθsθ

[

R2

2(L2 + ρ2)
Cab∂aχ∂bχ+

R2

2(L2 + ρ2)
Gab∂aϕ∂bϕ

+
1

4
FabF

ab +
L

(L2 + ρ2)
(γ̂2Faφ3

− γ̂3Faφ2
)Gab∂bϕ

]

(4.13)

where F ab ≡ CacCbdFcd and Cac is given in (4.11). The first order Lagrangian is a total

derivative since our embedding X5 = L, X6 = 0 is an exact solution of the equations of

motion.

The Wess-Zumino Lagrangian starts with a second order term in ε given by

LWZ = T7
1

2
P [C4 − C2 ∧B] ∧ F ∧ F = T7

(L2 + ρ2)2

R4
ǫijk∂ρAi∂jAk (4.14)

where we use latin indices to indicate coordinates on the three-sphere parametrized by

(θ, φ2, φ3), Ai is the flux potential on it and ǫijk is the Levi-Civita tensor density (ǫθ23 = 1).

This term turns out to be independent of the deformation parameters since the combination

(C4−C2∧B) at lowest order gives exactly the 4-form of the AdS5×S5 undeformed geometry.

Determining the equations of motion from the previous Lagrangian is now an easy

task. Introducing the fixed vector

va = γ̂2δ
a
3 − γ̂3δ

a
2 (4.15)

for the χ and ϕ scalars we find

∂a

[

√

−det(G)
(

R2

(L2 + ρ2)
Gab +

L2

(L2 + ρ2)2
vavb

)

∂bχ

]

= 0 (4.16)

∂a

[

√

−det(G) R2

(L2 + ρ2)
Gab

(

∂bϕ+
L

R2
vcFbc

)]

= 0 (4.17)
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whereas, using (4.17) the equations of motion for the gauge fields take the form

∂a

[

√

−det(G)GacGbd Fcd

]

− 4ρ(L2 + ρ2)

R4
ǫbjk∂jAk (4.18)

−
√

−det(G) L

(L2 + ρ2)
vd∂d

[

Gbc

(

∂cϕ+
L

R2
vfFcf

)]

= 0

It is interesting to note that the equations of motion depend only on the deformation

parameters γ̂2 and γ̂3 hidden in the vector v. In fact, at this order the dependence on

the parameter γ̂1 associated to the torus inside the D7 worldvolume completely cancels

between the factors
√

−det(g − b+ εF ) and 1/
√
G.

The scalar fluctuation χ along the direction where the branes are located at distance L

decouples from the rest. The scalar ϕ, instead, interacts non-trivially with the worldvolume

gauge fields through terms proportional to the deformation parameters.

The vector v has non-vanishing components only on the three-sphere and selects there

a fixed direction. As a consequence, the equations of motion (4.16)–(4.18) loose SO(4)

invariance.

As a first application we consider the L = 0 conformal case. The vibration of the brane

is given by X5 = εχ(σa) and X6 = εϕ(σa). The equations of motion reduce to

∂a

[

√

−det(G) R
2

ρ2
Gab ∂bΨ

]

= 0

∂a

[

√

−det(G) GacGbd Fcd

]

− 4ρ3

R4
ǫbjk∂jAk = 0 . (4.19)

where Ψ ≡ (ϕ,χ) and Gab is the inverse of the matrix (4.7) evaluated at L = 0. We see that

the dependence on the deformation parameters disappears completely and the equations of

motion reduce to the ones of the undeformed case [5]. In particular, the scalar and gauge

fluctuations decouple. Written explicitly, the scalar equations read

R4

ρ4
∂µ∂µΨ +

1

ρ3
∂ρ(ρ

3∂ρΨ) +
1

ρ2
∆S3Ψ = 0 (4.20)

where

∆S3Ψ ≡ 1

cθsθ
∂θ(cθsθ∂θΨ) +

1

c2θ
∂2

2Ψ +
1

s2θ
∂2

3Ψ (4.21)

is the Laplacian on the unit 3-sphere (∂2 ≡ ∂φ2
, ∂3 ≡ ∂φ3

).

According to the results in [2, 5] the corresponding AdS5 masses are above the

Breitenlohner-Freedman bound [33]. This is a further check of the stability of our brane

configuration.

5. The mesonic spectrum

We now concentrate on the more general situation X5 = L + εχ(σa), X6 = εϕ(σa) and

solve the equations of motion (4.16)–(4.18) for scalar and vector modes. We write the

abelian flux in terms of its potential one-form, Fab = ∂aAb− ∂bAa, and choose the Lorentz

gauge ∂µA
µ = 0 on the spacetime components.
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We find convenient to introduce covariant derivatives on the unit three-sphere

(θ, φ2, φ3). Given its metric g = diag(1, c2θ , s
2
θ), we have ∇iV

j = ∂iV
j + Γj

ikV
k with the

only non-vanishing components being Γθ
22 = −Γθ

33 = cθsθ, Γ2
2θ = − sθ

cθ
and Γ3

3θ = cθ

sθ
.

In order to simplify the equations we introduce the special operators

Oγ̂ ≡
R4

(L2 + ρ2)2
∂ν∂ν +

1

ρ3
∂ρ(ρ

3∂ρ) +
1

ρ2

1√
g
∂i(
√
g∂i) +

L2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)

2

Õγ̂ ≡
R4

(L2 + ρ2)2
∂ν∂ν +

1

ρ(L2 + ρ2)2
∂ρ

[

ρ(L2 + ρ2)2∂ρ

]

+
1

ρ2
∇l∇l

+
L2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)

2 (5.1)

along with their undeformed versions O0 ≡ Oγ̂ |γ̂2=γ̂3=0, Õ0 ≡ Õγ̂ |γ̂2=γ̂3=0.

Equation (4.16) for the χ mode then takes the compact form

Oγ̂ χ = 0 (5.2)

whereas equation (4.17) can be rewritten as

O0 Φ− L

R2
(γ̂2∂3 − γ̂3∂2)

[

1

ρ3
∂ρ(ρ

3Aρ) +
1

ρ2
∇lA

l

]

= 0 (5.3)

where we have defined

Φ ≡ ϕ+
L

R2
vaAa = ϕ+

L

R2
(γ̂2A3 − γ̂3A2) (5.4)

Equations (4.18) for the vector modes come into three classes, according to b being in

Minkowski, or b = ρ or b = i ≡ {θ, φ2, φ3}. We list the three cases.

• b in Minkowski: For b = µ and expressing the F flux in terms of its one-form potential,

equation (4.18) becomes

Oγ̂ Aµ − ∂µ

[

1

ρ3
∂ρ(ρ

3Aρ) +
1

ρ2
∇lA

l +
LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)Φ

]

= 0 (5.5)

with Φ defined in (5.4).

We apply ∂µ to this equation and sum over µ. Using [∂µ,Oγ̂ ] = 0 and Lorentz gauge,

solutions corresponding to non-trivial dispersion relations (k2 6= 0) satisfy

[

1

ρ3
∂ρ(ρ

3Aρ) +
1

ρ2
∇lA

l +
LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)Φ

]

= 0 , Oγ̂ Aµ = 0 (5.6)

• b = ρ: Again, expressing the flux in terms of the vector potential we obtain

Oγ̂ Aρ −
[

1

ρ3
∂ρ(ρ

3∂ρAρ) +
1

ρ2
∂ρ∇lA

l +
LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)∂ρΦ

]

= 0 (5.7)
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• b = i: On the internal S̃3 sphere we have

Õγ̂ Aj −
1

ρ2

(

∇l∇jA
l +

4ρ2

L2 + ρ2

1

cθsθ
ǫjlm∇lAm

)

(5.8)

− 1

ρ(L2 + ρ2)2
∂ρ

[

ρ(L2 + ρ2)2∂jAρ

]

− LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2) ∂jΦ = 0

where we have used 1√
g
∂i(
√
gF ij) = ∇iF

ij = ∇i∇iAj −∇i∇jAi.

Now, collecting all the equations and using the first of (5.6) in (5.3) the system of coupled

equations we need solve is

(0) Oγ̂χ = 0 ; Oγ̂ Aµ = 0 (5.9)

(1) Oγ̂ Φ = 0

(2)

[

1

ρ3
∂ρ(ρ

3Aρ) +
1

ρ2
∇lAl +

LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)Φ

]

= 0

(3) Oγ̂ Aρ −
[

1

ρ3
∂ρ(ρ

3∂ρAρ) +
1

ρ2
∂ρ∇lAl +

LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)∂ρΦ

]

= 0

(4) Õγ̂ Aj −
1

ρ2

(

∇l∇jA
l +

4ρ2

L2 + ρ2

1

cθsθ
ǫjlm∇lAm

)

− 1

ρ(L2 + ρ2)2
∂ρ

[

ρ(L2 + ρ2)2∂jAρ

]

− LR2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)∂jΦ = 0

Equations (1)–(4) exhibit a non-trivial interaction between the scalar Φ and the components

of the vector potential along the internal directions. The modes χ and Aµ instead decouple.

It is convenient to search for solutions expanded in spherical harmonics on S3. Scalar

spherical harmonics are a complete set of functions Ym2,m3

l in the
(

l
2 ,

l
2

)

representation of

SO(4) and with definite U(1) × U(1) quantum numbers (m2,m3) satisfying |m2 + m3| =
|m2 −m3| = l − 2k, l, k = 0, 1, . . . . For fixed l the degeneracy is (l + 1)2. Their defining

equations are4

∆S3 Ym2,m3

l = −l(l + 2)Ym2,m3

l

∂

∂φ2,3
Ym2,m3

l = im2,3 Ym2,m3

l (5.10)

Vector spherical harmonics come into three classes. Choosing them to be also eigenfunc-

tions of ∂
∂φ2,3

we have longitudinal harmonics Hi = ∇iYm2,m3

l , l ≥ 1 which are in the ( l
2 ,

l
2)

representation of SO(4) with (m2,m3) ranging as before. Transverse harmonics areM+
i ≡

Y(l,m2,m3);+
i with l ≥ 1 in the

(

l−1
2 , l+1

2

)

andM−
i ≡ Y

(l,m2,m3);−
i with l ≥ 1 in the

(

l+1
2 , l−1

2

)

.

Their degeneracy is l(l+2) and it is counted by |m2+m3| = l±1−2k, |m2−m3| = l∓1−2k.

4For their explicit realization see for instance [34, 24].
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These harmonics satisfy

∇i∇iM±
j −Rk

jM±
k = −(l + 1)2M±

j

ǫijk∇jM±;k = ±√g (l + 1)M±
i

∇iM±
i = 0

∂

∂φ2,3
M±

i = im2,3M±
i (5.11)

where
√
g = cθsθ is the square root of the determinant of the metric on S3, whereas Ri

j = 2δi
j

is the Ricci tensor.

As in the undeformed case [5] we require the solutions to be regular at the origin

(ρ = 0), normalizable and small enough to justify the quadratic approximation. All these

conditions are used to select the actual mass spectrum of the mesonic excitations.

5.1 The decoupled modes

5.1.1 The scalar mode χ

We start solving the equation for the decoupled scalar χ. Using the general identity
1√
g
∂i(
√
g∂is) = ∇i∇is valid for any scalar s, the equation Oγ̂χ = 0 reads explicitly

R4

(L2 + ρ2)2
∂ν∂νχ+

1

ρ3
∂ρ(ρ

3∂ρχ) +
1

ρ2
∇l∇lχ+

L2

(L2 + ρ2)2
(γ̂2∂3 − γ̂3∂2)

2χ = 0 (5.12)

We look for single-mode solutions of the form

χ(σa) = r(ρ) eikx Ym2,m3

l (θ, φ2, φ3) (5.13)

Inserting in (5.12) we obtain an equation for r(ρ) that, after the redefinitions

̺ =
ρ

L
, Γ̂2 = −k

2R4

L2
− (γ̂2m3 − γ̂3m2)

2 = M̄2 − (γ̂2m3 − γ̂3m2)
2 , (5.14)

becomes

∂2
̺r +

3

̺
∂̺r +

[

Γ̂2

(1 + ̺2)2
− l(l + 2)

̺2

]

r = 0 (5.15)

This has exactly the same structure of the equation found in the undeformed case [5]. The

only difference is the presence of the deformation parameters in Γ̂2 which in the undeformed

case reduces simply to M̄2. Following what has been done in that case [5] we find that the

general solution is

r(ρ) = ρl(L2 + ρ2)−αF (−α,−α + l + 1; l + 2;−ρ2/L2) (5.16)

where F is the hypergeometric function and α = −1+
√

1+Γ̂2

2 . This solution satisfies the

conditions of regularity and normalizability if the quantization condition

Γ̂2 = 4(n+ l + 1)(n + l + 2) n ∈ N , n, l ≥ 0 (5.17)
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is imposed. Using (5.14) and M2 = −k2, the mass spectrum of scalar mesons then follows

Mχ(n, l,m2,m3) =
2L

R2

√

(n + l + 1)(n+ l + 2) +

(

γ̂2m3 − γ̂3m2

2

)2

(5.18)

with n, l ≥ 0 and |m2 +m3| = |m2 −m3| = l − 2k, k a non-negative integer.

We see that the deformation parameters induce a non-trivial dependence of the mass

spectrum on the two U(1) quantum numbers (m2,m3), so breaking the degeneracy of the

undeformed case.

The mass spectrum is smoothly related to the one of the undeformed case for γ̂i → 0.

5.1.2 The type II modes

We look for excitations of the form

Aµ(σa) = ζµ ZII(ρ) e
ikx Ym2,m3

l (θ, φ2, φ3) , k · ζ = 0 (5.19)

Following the classification introduced in [5] for the undeformed case we call them Type II

modes. The equation Oγ̂Aµ = 0 in (5.9) yields to

R4

(L2 + ρ2)2
∂ν∂νAµ +

1

ρ3
∂ρ(ρ

3∂ρAµ)+
1

ρ2
∇l∇lAµ +

L2

(L2 + ρ2)2
(γ̂2∂3− γ̂3∂2)

2Aµ = 0 (5.20)

This is exactly the same equation as the one for the scalar mode χ. Therefore, for each

component Aµ we follow the same strategy of subsection 5.1.1 and find the mass spectrum

MII(n, l,m2,m3) =
2L

R2

√

(n+ l + 1)(n + l + 2) +

(

γ̂2m3 − γ̂3m2

2

)2

(5.21)

with n, l ≥ 0 and |m2 +m3| = |m2 −m3| = l − 2k.

Even for this type of vector fluctuations the spectrum is smoothly related to the un-

deformed one for γ̂i → 0.

5.2 The coupled modes

Having performed the field redefinition (5.4) we solve the coupled equations (1)–(4) by

considering elementary fluctuations of Φ, Aρ and Ai.

5.2.1 The type I modes

Being in a different representation the harmonicsM±
i do not mix with the others. Therefore

we can make the ansatz5

Φ = 0, Aρ = 0, Ai(σ
a) = Z±

I (ρ) eikxM±
i (θ, φ2, φ3) (5.22)

5We note that if we were to follow closely the classification of [5] we would call Type I modes the

elementary modes with ϕ = 0, i.e. with no fluctuations along the X6 coordinate. However, given the

structure of the equations of motion, in our case we find the definition (5.22) more convenient. In any case,

the two definitions coincide for γ̂i = 0.
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By using the identity ∇iA
i = 0 as follows from (5.11), equations (1), (2) and (3) in (5.9)

are identically satisfied whereas eq. (4) reads

Õγ̂ Aj −
1

ρ2

(

∇l∇jA
l +

4ρ2

L2 + ρ2

1

cθsθ
ǫjlm∇lAm

)

= 0 (5.23)

Considering the explicit expression for the operator Õγ̂ in (5.1) and using properties (5.11)

we find that Z±
I (ρ) is a solution of the equation

1

̺
∂̺

[

̺(̺2 + 1)2∂̺Z
±
I

]

+

[

Γ̂2 − (̺2 + 1)2

̺2
(l + 1)2 ∓ 4(̺2 + 1)(l + 1)

]

Z±
I = 0 (5.24)

where we have used the definitions (5.14). This is formally the same equation as the one

of the undeformed case, except for the different definition of Γ̂2. Therefore, following the

same steps [5] we find that the solutions are still hypergeometric functions

Z+
I (ρ) = ρl+1(ρ2 + L2)−α−1F (l + 2− α,−1− α; l + 2;−ρ2/L2)

Z−
I (ρ) = ρl+1(ρ2 + L2)−α−1F (l − α, 1 − α; l + 2;−ρ2/L2) (5.25)

where α = −1+
√

1+Γ̂2

2 . Requiring them to be regular at infinity we obtain the following

quantization conditions

Γ̂2
+ = 4(n + l + 2)(n + l + 3)

Γ̂2
− = 4(n + l)(n+ l + 1) n ≥ 0 (5.26)

As a consequence the mass spectrum reads

MI,+ =
2L

R2

√

(n+ l + 2)(n + l + 3) +

(

γ̂2m3 − γ̂3m2

2

)2
{

|m2 +m3| = l − 1− 2k

|m2 −m3| = l + 1− 2k

MI,− =
2L

R2

√

(n+ l)(n+ l + 1) +

(

γ̂2m3 − γ̂3m2

2

)2
{

|m2 +m3| = l + 1− 2k

|m2 −m3| = l − 1− 2k

(5.27)

where l ≥ 1 and k is a non-negative integer.

5.2.2 The type III modes

Finally, we consider the following fluctuations

Φ(σa) = XIII(ρ) e
ikx Ym2,m3

l (θ, φ2, φ3)

Aρ(σ
a) = YIII(ρ) e

ikx Ym2,m3

l (θ, φ2, φ3) (5.28)

Ai(σ
a) = ZIII(ρ) e

ikx∇iYm2,m3

l (θ, φ2, φ3) ≡ ∇iA(σa)

with l ≥ 1. We note that l = 0 corresponds to having Ai = 0. We will comment on this

particular case at the end of this section.
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Inserting in (5.9) and using the identities (5.10) for the scalar harmonics, after a bit

of algebra the equations (1)–(4) can be rewritten as

(1)

[

R4

(L2 + ρ2)2
∂ν∂ν +

1

ρ3
∂ρ

(

ρ3∂ρ

)

− l(l + 2)

ρ2
− L2

(L2 + ρ2)2
(γ̂2m3 − γ̂3m2)

2

]

Φ = 0

(2)
1

ρ3
∂ρ(ρ

3Aρ)−
l(l + 2)

ρ2
A+ i

LR2

(L2 + ρ2)2
(γ̂2m3 − γ̂3m2)Φ = 0

(3)
R4

(L2 + ρ2)2
∂ν∂νAρ +

1

ρ2
∂ρ

(

1

ρ
∂ρ(ρ

3Aρ)

)

−
[

l(l + 2)

ρ2
+

L2

(L2 + ρ2)2
(γ̂2m3 − γ̂3m2)

2

]

Aρ

+ 2iLR2 (L2 − ρ2)

ρ(L2 + ρ2)3
(γ̂2m3 − γ̂3m2)Φ = 0

(4)
R4

(L2 + ρ2)2
∂ν∂νA+

1

ρ(L2 + ρ2)2
∂ρ

(

ρ(L2 + ρ2)2∂ρA
)

− L2

(L2 + ρ2)2
(γ̂2m3 − γ̂3m2)

2A− 1

ρ(L2 + ρ2)2
∂ρ

[

ρ(L2 + ρ2)2Aρ

]

− i LR2

(L2 + ρ2)2
(γ̂2m3 − γ̂3m2)Φ = 0 (5.29)

It is worth mentioning that eq. (1) in (5.9) contains the operator 1√
g
∂i(
√
g∂i) which acts

differently on scalars and spherical vectors. Therefore, when this operator is applied on

Φ = ϕ+ L
R2 (γ̂2A3− γ̂3A2), in principle one should split it as acting on ϕ and Ai separately.

However, since in the present case Ai = ∇iA, exploiting the algebra of covariant derivatives

and the properties of scalar harmonics in (5.28), it is easy to show that

1√
g
∂i(
√
g∂i∇jA) = ∇i∇i∇jA− 2∇jA = −l(l + 2)∇jA (5.30)

This is exactly the same relation satisfied by the scalar ϕ, so we are led to 1√
g
∂i(
√
g∂iΦ) =

−l(l + 2)Φ. This confirms that considering Φ as an elementary scalar fluctuation is a

consistent procedure.

Equations (5.29) are four equations for three unknowns XIII , YIII , ZIII and lead to

non-trivial solutions only if they are compatible. Indeed it turns out that equation (4) is

identically satisfied once the others are. We then concentrate on the first three equations.

We first solve equation (1). By observing that it is identical to the equation for the

scalar χ (see eq. (5.12)) we immediately obtain

XIII(ρ) = ρl(L2 + ρ2)−n−l−1F (−(n+ l + 1),−n; l + 2;−ρ2/L2) (5.31)

where the quantization condition (5.17) has been used. As a consequence, the mass spec-

trum is

MΦ(n, l,m2,m3) =
2L

R2

√

(n+ l + 1)(n + l + 2) +

(

γ̂2m3 − γ̂3m2

2

)2

(5.32)
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where n ≥ 0, l ≥ 1 and |m2 +m3| = |m2 −m3| = l − 2k.

Equation (2) can be used to express the mode A in terms of Φ and Aρ. Inserting the

expressions (5.28) we obtain

ZIII =
1

l(l + 2)

[

1

ρ
∂ρ(ρ

3YIII) + i
LR2ρ2

(L2 + ρ2)2
(γ̂2m3 − γ̂3m2)XIII

]

(5.33)

We then consider equation (3) which exhibits an actual coupling between XIII and YIII .

In order to solve for YIII given the solution (5.31) for XIII we set

YIII(̺) = ̺l−1(1 + ̺2)−α P (̺) (5.34)

Using the definitions (5.14) together with the quantization condition (5.17) and defining

y ≡ −̺2, after some algebra the equation for P reads

y(1− y)P ′′(y) + [(l + 2) + (2n + l) y]P ′(y)− n(n+ l + 1)P (y)

= η
(1 + y)

(1− y)2F (−(n+ l + 1),−n; l + 2; y) (5.35)

where we have defined η ≡ i R2

2L2 (γ̂2m3 − γ̂3m2). This is an inhomogeneous hypergeometric

equation whose source is a polynomial of degree n, solution of the corresponding homoge-

neous equation. The most general solution is then of the form

P (y) = cF (−(n + l + 1),−n; l + 2; y) + P̄ (y) (5.36)

for arbitrary constant c, where P̄ is a particular solution of (5.35). Exploiting the general

identity

(1− y)F ′(−(n+ l + 2),−n; l + 1; y) + (n + l + 2)F (−(n + l + 2),−n; l + 1; y)

=
(n + l + 1)(n+ l + 2)

(l + 1)
F (−(n + l + 1),−n; l + 2; y) (5.37)

valid for hypergeometric functions with integer coefficients, it is easy to show that a solution

is given by

P̄ (y) = η
(l + 1)

(n+ l + 1)(n + l + 2)

F (−(n+ l + 2),−n; l + 1; y)

1− y (5.38)

The general solution of equation (3) is then

YIII(ρ) = ρl−1(L2 + ρ2)−n−l−2
[

c (L2 + ρ2)F (−(n + l + 1),−n; l + 2;−ρ2/L2)

+η
(l + 1)

(n+ l + 1)(n + l + 2)
F (−(n+ l + 2),−n; l + 1;−ρ2/L2)

]

(5.39)

This solution is regular at the origin and not divergent for ρ→∞. Due to the quantization

condition (5.17) the corresponding mass spectrum is still given by

MIII(n, l,m2,m3) =
2L

R2

√

(n+ l + 1)(n + l + 2) +

(

γ̂2m3 − γ̂3m2

2

)2

(5.40)
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with n ≥ 0, l ≥ 1 and |m2 +m3| = |m2 −m3| = l − 2k.

Before closing this section we comment on the particular l = m2 = m3 = 0 mode.

In (5.28) this corresponds to turn off Ai = ∇iA since A(σa) is independent of the three-

sphere coordinates. Equation (2) reduces to ∂ρ(ρ
3Aρ) = 0 which, together with the con-

dition of regularity at ρ = 0, sets Aρ = 0. Equations (3) and (4) in (5.29) are then auto-

matically satisfied, whereas eq. (1) provides a non-trivial solution for Φ as given in (5.31)

with mass (5.32) where we set l = m2 = m3 = 0 .

As a slightly different attitude we can consider the configuration with all the vector

modes turned off (YIII = ZIII = 0) and study only scalar Φ fluctuations of the form (5.28).

In this case Φ is still solution of equation (1) but, as follows from the rest of equations, it

is constrained by the further condition

(γ̂2m3 − γ̂3m2)Φ = 0 (5.41)

In general, for non-vanishing and distinct deformation parameters, non-trivial solutions can

be found only for m2 = m3 = 0, i.e. only the U(1)×U(1) zero-mode sector is selected and

the fluctuations are independent of (φ2, φ3). A greater number of solutions, corresponding

to the modes m2 = m3, is instead allowed when γ̂2 = γ̂3, therefore in particular for the

supersymmetric deformation. In any case, the mass spectrum is given by

MΦ(n, l) =
2L

R2

√

(n+ l + 1)(n + l + 2) n ≥ 0 l (even) ≥ 0 (5.42)

and coincides with the undeformed mass.

6. Analysis of the spectrum

From the previous discussion it follows that the bosonic modes arising from the compacti-

fication of the D7-brane on the deformed S̃3 give rise to a mesonic spectrum which is given

by

• 2 scalars and 1 vector in the ( l
2 ,

l
2) with l ≥ 0, |m2 ±m3| = l − 2k and mass

Mχ,Φ,II(n, l,m2,m3) =
2L

R2

√

(n+ l + 1)(n + l + 2) +

(

γ̂2m3 − γ̂3m2

2

)2

• 1 scalar in the ( l
2 ,

l
2 ) with l ≥ 1, |m2 ±m3| = l − 2k and mass

MIII(n, l,m2,m3) =
2L

R2

√

(n+ l + 1)(n + l + 2) +

(

γ̂2m3 − γ̂3m2

2

)2

• 1 scalar in the ( l−1
2 , l+1

2 ) with l ≥ 1, |m2 ±m3| = l ∓ 1− 2k and mass

MI,+(n, l,m2,m3) =
2L

R2

√

(n + l + 2)(n+ l + 3) +

(

γ̂2m3 − γ̂3m2

2

)2
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• 1 scalar in the ( l+1
2 , l−1

2 ) with l ≥ 1, |m2 ±m3| = l ± 1− 2k and mass

MI,−(n, l,m2,m3) =
2L

R2

√

(n+ l)(n+ l + 1) +

(

γ̂2m3 − γ̂3m2

2

)2

for any n ≥ 0. This matches exactly the bosonic content found in the undeformed case [5].

However, in this case the γ-deformation breaks SO(4) → U(1) × U(1) and induces an

explicit dependence of the mass spectrum on the the quantum numbers (m2,m3) with a

pattern similar to the Zeeman effect for atomic electrons where the constant magnetic field

which breaks SU(2) rotational invariance down to U(1) induces a dependence of the energy

levels on the azimuthal quantum number m.6

The dependence on the deformation parameters disappears completely in the m2 =

m3 = 0 sector (or for γ̂2 = γ̂3 and m2 = m3) and the mass eigenvalues coincide with

the ones of the undeformed theory. When γ̂2 = γ̂3 the mass spectrum acquires an extra

symmetry under the exchange of the two U(1)’s and an extra degeneracy corresponding to

m2 → m2 +m, m3 → m3 +m, m integer.

For any value of γ̂i there are no tachyonic modes, so confirming the stability of our

configuration. Moreover, massless states are absent and the spectrum has a mass gap given

by

Mgap = 2
√

2
L

R2
(6.1)

This is exactly the mass gap present in the undeformed theory [5].

In order to analyze in detail the mass splitting induced by the deformation and study

how the modes organize themselves among the different eigenvalues it is convenient to

rewrite the mass of a generic eigenstate X as

MX(n, l,m2,m3) =

√

(

M
(0)
X (n, l)

)2
+

4L2

R4
(∆M(m2,m3))

2 (6.2)

where M
(0)
X is the undeformed mass, whereas

∆M(m2,m3) ≡
(

γ̂2m3 − γ̂3m2

2

)

(6.3)

is the Zeeman-splitting term.

Since for any l ≥ 2 the following mass degeneracy occurs

M
(0)
χ,Φ,II(n, l) = M

(0)
III(n, l) = M

(0)
I,+(n, l − 1) = M

(0)
I,−(n, l + 1) (6.4)

for γ̂i = 0 we have 8(l + 1)2 bosonic degrees of freedom corresponding to the same mass

eigenvalue. For the particular values l = 0, 1 the number of states is reduced since for l = 0

modes A(I,+) and AIII are both absent, whereas for l = 1 A(I,+) is still absent. For any

value of l they match the bosonic content of massive N = 2 supermultiplets [5].

6A similar effect has been observed in the case of backgrounds with B fields turned on in Minkowski [18,

35].
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State |m2 −m3| = 2j Degeneracy

χ, Φ, AIII
0

2, 4, · · · , l
l + 1

2(l + 1)

Aµ
0

2, 4, · · · , l
l + 1

2(l + 1)

AI,+
0

2, 4, · · · , l
l − 1

2(l − 1)

AI,−
0

2, 4, · · · , l
l + 3

2(l + 3)

Table 1: Degeneracy of states in the case γ̂2 = γ̂3 and l ≥ 2 even. The degeneracy in the third

column refers to every single value of j.

State |m2 −m3| = 2j + 1 Degeneracy

χ, Φ, AIII 1, 3, · · · , l 2(l + 1)

Aµ 1, 3, · · · , l 2(l + 1)

AI,+ 1, 3, · · · , l 2(l − 1)

AI,− 1, 3, · · · , l 2(l + 3)

Table 2: Degeneracy of states in the case γ̂2 = γ̂3 and l ≥ 3 odd.

In the present case mass degeneracy occurs among states which satisfy the above

condition and have the same value of ∆M(m2,m3). Therefore, having performed the l-

shift for the (I,±) modes as in (6.4), we concentrate on the degeneracy in ∆M(m2,m3) for

fixed values of (n, l). It is convenient to discuss the γ̂2 = γ̂3 and γ̂2 6= γ̂3 cases, separately.

γ̂2 = γ̂3 ≡ γ̂: this case includes the supersymmetric LM-theory. The deformation enters

the mass spectrum only through the difference (m2 − m3) and the splitting term ∆M

depends only on a single integer j

l even 2j ≡ |m2 −m3| = 0, 2, · · · , l ∆M(j) = γ̂ j

l odd 2j + 1 ≡ |m2 −m3| = 1, 3, · · · , l ∆M(j) = γ̂

(

j +
1

2

)

(6.5)

Excluding for the moment the l = 0, 1 cases, for any given value of 2j and 2j + 1 the

degeneracies of the corresponding mass levels are listed in table 1 and table 2, respectively.

For any value of l ≥ 2 we observe Zeeman-like splitting as shown in figure 1. Precisely,

the splitting occurs in the following way: For l even there are 8(l+ 1) d.o.f. corresponding

to j = 0 and 16(l + 1) for each j 6= 0. Since we have l/2 possible values of j 6= 0, the total

number of states sum up correctly to 8(l+1)2. Analogously, for odd values of l the number

of levels is (l+ 1)/2, each of them corresponds to 16(l + 1) d.o.f., so we still have 8(l+ 1)2

modes.

The l = 0 case corresponds to m2 = m3 = 0 (j = 0). The deformation is then harmless

and we are back to the bosonic content of the undeformed theory, that is three scalars χ, Φ,
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Figure 1: The Zeeman-splitting of the undeformed 8(l+ 1)2 d.o.f. for γ̂2 = γ̂3 and l even (left) or

odd (right).

A(I,−) and one vector with M (0)(n, 0). Similarly, for l = 1 (j = 0), excluding A(I,+) we have

three scalars and one vector in the (1/2, 1/2) of SO(4) and one scalar in the (3/2, 1/2), all

corresponding to M2 = (M (0)(n, 1))2 + γ̂2L2/R4. These cases can be included in tables 1

and 2 with the agreement to discharge modes which are not switched on.

We note that there is an accidental mass degeneracy which is remnant of the unde-

formed N = 2 theory. In particular, in the supersymmetric LM case this allows to organize

the bosonic states in N = 1 supermultiplets.

In principle, this unexpected degeneracy could be related to the particular theories we

are considering which are smooth deformations of their undeformed counterpart. In order

to better understand N = 2 vs. N = 1 supersymmetry at the level of mesonic spectrum,

the study of the fermionic sector is a mandatory requirement.

γ̂2 6= γ̂3: the splitting term ∆M now depends on both m2,3 and no longer on their

difference. In order to make the comparison with the γ̂2 = γ̂3 case easier, for fixed l it is

convenient to label ∆M by two numbers j and s

l even ∆M(j, s) =
(j + s) γ̂2 + (j − s) γ̂3

2

l odd ∆M(j, s) =
(j + 1

2 + s) γ̂2 + (j + 1
2 − s) γ̂3

2
(6.6)

where j is still defined as before, whereas s is integer if l is even and half-integer if l is odd.

Its range can be read in tables 3 and 4.

As appears in the tables the degeneracy is almost completely broken. In fact, except

for the m2 = m3 = 0 case, only a residual degeneracy 2 survives due to the fact that the

mass (6.2) is invariant under the exchange (m2,m3) → (−m2,−m3).

To better understand the level splitting it is convenient to compare the present situation

with the previous one. In fact, fixing j, the degenerate degrees of freedom of the γ̂2 = γ̂3

case further split according to the different values of s. If l is even and j = 0, the previous

8(l + 1) degenerate levels split in (l/2 + 2) new mass levels, while for j 6= 0 the 16(l + 1)

levels open up in (l+ 3) levels (see figure 2). If l is odd we find (l+ 3) different mass levels

as drawn in figure 3.

The particular cases l = 0, 1 can be read from tables 3 and 4 by discharging

(A(I,+), AIII) and A(I,+), respectively. For l = 0 three modes χ, Φ and Aµ correspond
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State |m2 −m3| = 2j s Degeneracy

χ, Φ, AIII
0

2, 4, · · · , l

0

1, 2, · · · , l
2

− l
2 , · · · , 0, · · · , l

2

1

2

2

Aµ
0

2, 4, · · · , l

0

1, 2, · · · , l
2

− l
2 , · · · , 0, · · · , l

2

1

2

2

AI,+
0

2, 4, · · · , l

0

1, 2, · · · , l−2
2

− l−2
2 , · · · , 0, · · · , l−2

2

1

2

2

AI,−
0

2, 4, · · · , l

0

1, 2, · · · , l+2
2

− l+2
2 , · · · , 0, · · · , l+2

2

1

2

2

Table 3: Degeneracy of states in the case γ̂2 6= γ̂3 and l ≥ 2 even. The degeneracy in the fourth

column refers to every single pair (j, s).

State |m2 −m3| = 2j + 1 s Degeneracy

χ, Φ, AIII 1, 3, · · · , l − l
2 , · · · , l

2 2

Aµ 1, 3, · · · , l − l
2 , · · · , l

2 2

AI,+ 1, 3, · · · , l − l−2
2 , · · · , l−2

2 2

AI,− 1, 3, · · · , l − l+2
2 , · · · , l+2

2 2

Table 4: Degeneracy of states in the case γ̂2 6= γ̂3 and l ≥ 3 odd.

to ∆M = 0 (j = s = 0), whereas the three degrees of freedom of A(I,−) split into one d.o.f.

with ∆M = 0 (j = s = 0) and two with ∆M = γ̂2−γ̂3

2 (j = s = 1). Already in the simplest

l = 0 case the SO(4) breaking is manifest. For l = 1 (j = 0) the four degrees of freedom of

each mode χ, Φ, AIII and Aµ now split into two states with ∆M = γ̂2/2 and two states

with ∆M = γ̂3/2. On the other hand, the 8 d.o.f. corresponding to A(I,−) split into two

states with ∆M = γ̂2/2, two states with ∆M = γ̂3/2, two states with ∆M = (2γ̂2 − γ̂3)/2

and two with ∆M = (2γ̂3 − γ̂2)/2.

As discussed in [5] the undeformed spectrum exhibits a huge degeneracy in ν ≡ n + l

which can be traced back to a (non-exact) SO(5) symmetry. This originates from the fact

that the induced metric on the D7-brane is conformally equivalent to E(1,3) × S4. If in

the quadratic action for the fluctuations the conformal factor can be re-absorbed by a field

redefinition the corresponding equations of motion are invariant under S4 diffeomorphisms.

Therefore, solutions can be found by expanding in spherical harmonics of S4 and the mass

spectrum of the elementary modes depends only on the SO(5) quantum number ν. This
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Figure 2: The Zeeman-splitting of the γ̂2 = γ̂3 = γ̂ d.o.f. for γ̂2 6= γ̂3 and l even. The value of

∆M here appearing is pictured considering the case γ̂3 < γ̂ < γ̂2.

Figure 3: The Zeeman-splitting of the γ̂2 = γ̂3 d.o.f. for γ̂2 6= γ̂3 and l odd. Once again

γ̂3 < γ̂ < γ̂2.

happens for instance for scalar modes and vectors which, for a given ν, organize themselves

into reducible representations (0, 0)⊕(1/2, 1/2) · · ·⊕(ν/2, ν/2) of SO(4). This is indeed the

decomposition of the highest weight representation [ν, 0] of SO(5) in SO(4) representations.
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In principle, the same analysis can be applied also to our case. Here the induced

metric (3.11) is conformally equivalent to E(1,3) × S̃4 where S̃4 is the deformed four-sphere

(set ̺ = ρ/L)

ds2
S̃4

=
R4

4L2

4

(1 + ̺2)2
(d̺2 + ̺2dΩ̃2

3) (6.7)

and

dΩ̃2
3 = dθ2 +G

[

c2θdφ
2
2 + s2θdφ

2
3 +

̺2c2θs
2
θ(γ̂2dφ2 + γ̂3dφ3)

2

(1 + ̺2)2

]

(6.8)

is the deformed three-sphere.

It follows that a dependence on the SO(5) quantum number ν = n + l still appears

if the conformal factor (1 + ̺2)L2/R2 can be compensated by a field redefinition and the

action can be entirely expressed in terms of the metric of E(1,3) × S4 plus deformations.

A close look at the action (4.13) reveals that this is always the case for the decoupled

modes χ, Aµ and also for Φ. Despite of the presence of the deformation terms which break

explicitly the SO(5) invariance, we can still search for solutions expanded in spherical

harmonics on S4 and, consequently, the mass spectrum exhibits a dependence on n and

l only in the combination n + l. In particular, in the zero-mode sector m2 = m3 = 0 a

degeneracy appears which is remnant of the SO(5) invariance. Of course, the eigenstates

corresponding to degenerate eigenvalues never reconstruct the complete [ν, 0] representation

of SO(5), being organized into a direct product of SO(4) representations with integer spins

only (0, 0) ⊕ (1, 1) · · · ([ν/2] , [ν/2]), since m2 = m3 = 0 only occurs for even values of l.

7. The dual field theory

In this section we construct the 4D conformal field theory whose composite operators are

dual to the mesonic states just found.

As already discussed in section 3, in the supergravity description the operations of TsT

deforming the AdS5 × S5 background and adding D7-branes commute. Since on the field

theory side TsT deformations correspond to promoting all the products among the fields

to be ∗-products [21], whereas the addition of D7-branes corresponds to adding interacting

fundamental matter [2] we expect that in determining the action for the dual field theory

the operations of ∗-product deformation and addition of fundamental matter commute.

Therefore, in order to obtain the dual action we proceed by promoting to ∗-products all

the products in the N = 2 SYM action with fundamental matter corresponding to the

undeformed Karch-Katz model.

Given Nf probe D7-branes embedded in the ordinary AdS5 × S5 background with N

units of flux, N ≫ Nf , in the large N limit the dual field theory on the D3-branes consists

of N = 4 SU(N) SYM coupled in a N = 2 fashion to Nf N = 2 hypermultiplets which

contain new dynamical fields arising from open strings stretching between D3 and D7-

branes. In N = 1 superspace language the N = 4 gauge multiplet is given in terms of one

N = 1 gauge superfield Wα and three chirals Φ1, Φ2, Φ3 all in the adjoint representation of

SU(N). The N = 2 hypermultiplets are described by Nf chiral superfields Qr transforming

in the (N, N̄f ) of SU(N)× SU(Nf ) plus Nf chirals Q̃r transforming in the (N̄ ,Nf ).
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According to the AdS/CFT duality the lowest components of the three chirals Φi are

in one-to-one correspondence with the three complex coordinates of the internal 6D space

as (we use notations consistent with section 2)

X1 + iX2 ≡ uρ3e
iφ3 → Φ3|θ=θ̄=0

X3 + iX4 ≡ uρ2e
iφ2 → Φ2|θ=θ̄=0 (7.1)

X5 + iX6 ≡ uρ1e
iφ1 → Φ1|θ=θ̄=0

For a configuration of D7-branes placed at distance X5 + iX6 = L from the D3-branes the

Lagrangian of the corresponding gauge theory is [2]

L =

∫

d4θ
[

Tr
(

e−g V Φ̄ie
g V Φi

)

+ tr
(

Q̄eg VQ+ Q̃e−g V ¯̃Q
)]

+
1

2g2

∫

d2θTr (WαWα)

+i

∫

d2θ
[

gTr
(

Φ1
[

Φ2,Φ3
])

+ g tr
(

Q̃Φ1Q
)

+m tr
(

Q̃Q
)]

+ h.c. (7.2)

where the trace Tr is over color indices and tr is over the flavor ones. This action is N = 2

supersymmetric with (Wα,Φ1) realizing a N = 2 vector multiplet and (Φ2,Φ3) an adjoint

matter hypermultiplet. The coupling of Φ1 with massive matter fields leads to a non-

trivial vev 〈Φ1〉 = −m/g which gives the displacement between the D3 and the D7-branes

according to the identification L ≡ −m/g.
The theory has a SU(2)Φ × SU(2)R invariance corresponding to a symmetry which

exchanges (Φ2,Φ3) and to the N = 2 R-symmetry, respectively. In addition, for m = 0,

there is a U(1) R-symmetry under which (Qr, Q̃r) and (Φ2,Φ3) are neutral, whereas Φ1

has charge 2 and Wα has charge 1 [36, 16]. In the dual supergravity description these

symmetries originate from the SO(4)× SO(2) invariance which survives after the insertion

of the D7-branes [2] and which are related to rotations in the (X1,X2,X3,X4) and (X5,X6)

planes, respectively. Fixing X5 + iX6 = L 6= 0 breaks rotational invariance in the (X5,X6)

plane and, correspondingly, the mass term breaks the U(1) R-symmetry in the dual gauge

theory. Finally, the theory also possesses a U(1) baryonic symmetry under which only

(Qr, Q̃r) are charged (1,−1). This is a residual of the original U(Nf ) invariance.

For m = 0 and in the large N limit with Nf fixed the theory is superconformal

invariant. In fact, the beta-function for the ’t Hooft coupling λ = g2N is proportional to

λ2Nf/N and vanishes for Nf/N → 0.

Since we are interested in non-supersymmetric deformations of this theory we need

the Lagrangian (7.2) expanded in components. Given the physical components of the

multiplets being

Φi =
(

ai, ψi
α

)

Qr = (qr, χr
α)

Wα = (λα, fαβ) Q̃r = (q̃r, χ̃rα) (7.3)

after eliminating the auxiliary fields through their algebraic equations of motion, the La-

grangian (7.2) takes the form

L = LN=4 + Lb + Lf + Lint (7.4)
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where7

LN=4 = Tr

(

−1

2
fαβfαβ + iλ

[

∇, λ̄
]

+ āi�a
i + iψi

[

∇, ψ̄i

]

)

+g2 Tr

(

−1

4

[

ai, āi

] [

aj , āj

]

+
1

2

[

ai, aj
]

[āi, āj ]

)

+

{

igTr

(

[

ψ̄i, λ̄
]

ai +
1

2
ǫijk

[

ψi, ψj
]

ak

)

+ h.c.

}

(7.5)

is the ordinary N = 4 Lagrangian,

Lb = tr
(

q̄
(

�− |m|2
)

q + q̃
(

�− |m|2
)

¯̃q
)

−g
2

4
tr

(

q̄ q q̄ q + q̃ ¯̃q q̃ ¯̃q − 2q̄ ¯̃q q̃ q + 4q̃ ¯̃q q̄ q

)

+
g2

2
tr
(

q̃
[

ai, āi

]

¯̃q − q̄
[

ai, āi

]

q
)

−
{

tr

(

gm̄(q̄a1q + q̃a1
¯̃q) +

g2

2

(

q̄ā1a
1q + q̃a1ā1

¯̃q + 2q̃ [ā2, ā3] q
)

)

+ h.c.

}

(7.6)

describes the bosonic fundamental sector and its interactions with bosonic matter in the

adjoint,

Lf = i tr
(

χ̄
−→∇χ− χ̃←−∇ ¯̃χ

)

+
{

im tr

(

χ̃χ

)

+ h.c.
}

(7.7)

describes the free fermionic fundamental sector and

Lint = ig tr

(

χ̄λ̄q − q̃λ̄ ¯̃χ+ q̃ψ1χ+ χ̃ψ1q + χ̃a1χ

)

+ h.c. (7.8)

contains the interaction terms between bosons and fermions.

The most general non-supersymmetric marginal deformation of this theory can be

obtained by promoting all the products among the fields in the Lagrangian to be ∗-products

according to the following prescription [38]

f g −→ f ∗ g = eiπQ
f
i Q

g
j ǫijkγk f g (7.9)

where γk are the deformation parameters, whereas (Q1, Q2, Q3) are the charges of the

fields under the three U(1) global symmetries of the original N = 4 theory associated to the

Cartan generators of SU(4). On the dual supergravity side they correspond to angular shifts

in (7.1). Accordingly, the charges of the chiral Φi superfields are chosen as in table 5 [38]

with the additional requirement for the charges of the spinorial superspace coordinates to

be (1/2, 1/2, 1/2). This insures invariance of the superpotential term
∫

d2θTr(Φ1[Φ2,Φ3])

under the three U(1)’s. The charges for the matter chiral superfields are determined by

requiring the superpotential term
∫

d2θtr(Q̃Φ1Q) to respect the three global symmetries

in addition to the condition for Q and Q̃ to have the same charges.

7We use superspace conventions of [37]. When ψλ indicates the product of two chiral fermions it has to

be understood as ψαλα. The same convention is used for antichiral fermions.
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Φ1 Φ2 Φ3 Q Q̃

Q1 1 0 0 0 0

Q2 0 1 0 1
2

1
2

Q3 0 0 1 1
2

1
2

Table 5: U(1) charges of the chiral superfields. The corresponding antichirals have opposite

charges.

The gauge superfield Wα and the gaugino have charges (1/2, 1/2, 1/2), whereas the

gauge field strength fαβ is neutral under the three U(1)’s.

In the absence of mass term in (7.2) the corresponding currents (Jφ1
, Jφ2

, Jφ3
) are

conserved, whereas Jφ1
fails to be conserved when m 6= 0. Moreover, (Jφ2

, Jφ3
) are ABJ-

anomaly free also in the presence of fundamental matter, whereas Jφ1
is non-anomalous

only in the quenching limit Nf/N → 0.

As is well-known, the ordinary Lunin-Maldacena U(1)×U(1) charges [21] are associated

to (ϕ1, ϕ2) angular shifts after performing the change of variables (in our notations)

ϕ1 =
1

3
(φ1 + φ2 − 2φ3), ϕ2 =

1

3
(φ2 + φ3 − 2φ1), ϕ3 =

1

3
(φ1 + φ2 + φ3), (7.10)

Expressing the (Jϕ1
, Jϕ2

) generators in terms of (Jφ1
, Jφ2

, Jφ3
) we easily find that the

Lunin-Maldacena charges are given by

Q
(LM)
1 = Q2 −Q3 , Q

(LM)
2 = Q2 −Q1 (7.11)

In the case of supersymmetric deformations the third linear combination QR ∼ (Q1 +Q2 +

Q3) provides the R-symmetry charge.

We are now ready to derive the deformed action by using the prescription (7.9) in the

original undeformed one.

We begin with the one-parameter deformation, γ1 = γ2 = γ3. In this case N = 1

supersymmetry survives and we can work directly with the superspace action (7.2). Since

only for m = 0 the ∗-product is well-defined being the three U(1) charges conserved, the

correct way to proceed is to deform the massless theory and then add the mass operator as

a perturbation. Following this prescription and taking into account the superfields charges

given in table 5, the Lagrangian of the deformed theory is

L =

∫

d4θ
[

Tr
(

e−g V Φ̄ie
g V Φi

)

+ tr
(

Q̄eg VQ+ Q̃e−g V ¯̃Q
)]

+
1

2g2

∫

d2θTr (WαWα)

+ig

∫

d2θ
[

Tr
(

eiπγΦ1Φ2Φ3 − e−iπγΦ1Φ3Φ2

)

+ tr
(

Q̃Φ1Q
)

+m tr
(

Q̃Q
)]

(7.12)

We note that a non-trivial deformation appears in the superpotential only in the pure

adjoint sector. The interaction and the mass terms involving flavor matter do not change,

so that the vev for Φ1 which is related to the D7-brane location through the dictionary (7.1)

is the same as in the undeformed theory, 〈Φ1〉 = −m/g ≡ L. Since in the supergravity
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description we have chosen L to be real (X5 = L, X6 = 0) here and in what follows we

restrict to real values of m.

As already stressed, for m 6= 0 the Q1 charge is not conserved, neither is Q
(LM)
2 .

Therefore, this deformed theory possesses only one U(1) non-R–symmetry corresponding

to Q
(LM)
1 .

The action (7.12) has been obtained by ∗-product deforming the N = 2 SYM ac-

tion (7.2). However, it could have been equivalently obtained by adding fundamental

chiral matter to the N = 1 β-deformed SYM theory of [21]. In particular, the appearance

of the gauge coupling constant in front of the adjoint chiral superpotential insures that for

m = 0 and in the probe approximation the theory is superconformal invariant [39].

We now consider the more general non-supersymmetric case. We implement the ∗-
product (7.9) in the action (7.4). Using the deformed commutator [38]

[Xi,Xj ]Mij
≡ eiπMijXiXj − e−iπMijXjXi (7.13)

where for Xi fermions

Mfermions ≡ B =











0 1
2(γ1 + γ2) −1

2(γ1 + γ3) −1
2(γ2 − γ3)

−1
2(γ1 + γ2) 0 1

2(γ2 + γ3) −1
2(γ3 − γ1)

1
2(γ3 + γ1) −1

2(γ2 + γ3) 0 −1
2(γ1 − γ2)

1
2(γ2 − γ3)

1
2(γ3 − γ1)

1
2(γ1 − γ2) 0











(7.14)

whereas for scalars

Mscalars ≡ C =







0 γ3 −γ2

−γ3 0 γ1

γ2 −γ1 0






(7.15)

the deformed LN=4 takes the form

LN=4 = Tr

(

−1

2
fαβfαβ + iλ

[

∇, λ̄
]

+ āi�a
i + iψi

[

∇, ψ̄i

]

)

+g2 Tr

(

−1

4

[

ai, āi

] [

aj, āj

]

+
1

2

[

ai, aj
]

Cij
[āi, āj ]Cij

)

+

{

igTr

(

[

ψ̄i, λ̄
]

Bi4
ai +

1

2
ǫijk

[

ψi, ψj
]

Bij
ak

)

+ h.c.

}

(7.16)

while the bosonic sector reads

Lb = tr
(

q̄
(

�−m2
)

q + q̃
(

�−m2
)

¯̃q
)

− g2

4
tr

(

q̄ q q̄ q + q̃ ¯̃q q̃ ¯̃q − 2q̄ ¯̃q q̃ q + 4q̃ ¯̃q q̄ q

)

+
g2

2
tr
(

q̃
[

ai, āi

]

¯̃q − q̄
[

ai, āi

]

q + q̄ā1a
1q + q̃a1ā1

¯̃q
)

+
{

g2 tr
(

q̃ [ā2, ā3]C23
q
)

− gm tr
(

e−iπ(γ2−γ3)q̄a1q + eiπ(γ2−γ3)q̃a1 ¯̃q
)

+ h.c.
}

(7.17)
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and the fermionic one

Lf = i tr
(

χ̄
−→∇χ− χ̃←−∇ ¯̃χ

)

+
{

im tr

(

χ̃χ

)

+ h.c.
}

(7.18)

Finally the boson-fermion interaction terms become

Lint = ig tr

(

ei
π
4
(γ2−γ3)χ̄λ̄q − e−i π

4
(γ2−γ3)q̃λ̄ ¯̃χ

+ ei
π
4
(γ2−γ3)q̃ψ1χ+ e−i π

4
(γ2−γ3)χ̃ψ1q + χ̃a1χ

)

+ h.c. (7.19)

We observe that the fundamental fields q and q̃ experiment the γ1-deformation only through

the modified commutator [ā2, ā3]C23
in Lb. Moreover, γ2 and γ3 are always present in

the combination (γ2 − γ3) so that the corresponding phases disappear when γ2 = γ3, in

particular for supersymmetric deformations.

8. Conclusions

In this paper we have studied the embedding of D7-branes in LM-Frolov backgrounds

with the aim of finding the mesonic spectrum of the dual Yang-Mills theory with flavors,

according to the gauge/gravity correspondence. Since these theories have N = 1 or no

supersymmetry depending on the choice of the deformation parameters γ̂i, they provide an

interesting playground in the study of generalizations of the AdS/CFT correspondence to

more realistic models with less supersymmetry.

These geometries are smoothly related to the standard AdS5 × S5 from which they

can be obtained by operating with TsT transformations. Therefore, if we consider D7-

brane embeddings which closely mimic the ones of the undeformed case [2] we expect the

flavor probes to share some properties with the probes of the undeformed case. Driven by

this observation we have considered a spacetime filling D7-brane wrapped on a deformed

three-sphere in the internal coordinates. We have found that for both the supersymmetric

and the non-supersymmetric deformations a static configuration exists which is completely

independent of the specific values of the deformation parameters γ̂i. As a consequence

the D7-brane still lies at fixed values of its transverse directions and exhibits no quark

condensate [2]. We remark that this shape is exact and stable in the supersymmetric as

well as in the non-supersymmetric cases.

Although the shape of the brane does not feel the effects of the deformation, its fluc-

tuations do. In fact, studying the scalar and vector fluctuations we have found that a

non-trivial dependence on the γ̂2,3 parameters appears both in terms which correct the free

dynamics of the modes and in terms which couple the U(1) worldvolume gauge field to one of

the scalars in the mutual orthogonal directions to the D3-D7 system. All the deformation-

dependent contributions arise from the Dirac-Born-Infeld term in the D7-brane action,

whereas the Wess-Zumino term does not feel the deformation. The γ̂1 parameter, associ-

ated to a TsT transformation along the torus inside the D7 worldvolume, never enters the

equations of motion.
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A smooth limit to the undeformed equations of motion exists for γ̂i → 0. In this limit

all the modes decouple and we are back to the undeformed solutions of [5]. The effect of

the deformations becomes negligible also in the UV limit (ρ → ∞). This is an expected

result since the deformations involve tori in the internal space and in the UV limit the

metric of the background reduces to flat four dimensional Minkowski spacetime.

On the other hand, the situation changes once we consider the general deformed equa-

tions. In fact, solving analytically these equations for elementary excitations of scalars and

vectors we have found that the mass spectrum is still discrete and with a mass gap and

the corresponding eigenstates match the one of the undeformed case. However, the mass

eigenvalues acquire a non-trivial dependence on γ̂2,3. These new terms, being proportional

to the U(1) × U(1) quantum numbers (m2,m3), induce a level spitting according to a

Zeeman-like effect.

We have performed a detailed analysis of the level splitting and of the corresponding

degeneracy. The situation turns out to be very different according to γ̂2 and γ̂3 being equal

or not. In fact, for γ̂2 6= γ̂3 the degeneracy is almost completely broken since only a residual

degeneracy associated to the invariance of the mass under (m2,m3) → (−m2,−m3) sur-

vives. In particular, the breaking of SO(4) is manifest. Instead, for γ̂2 = γ̂3 the mass levels

split but for each value of the mass an accidental degeneracy survives which is remnant of

the N = 2 case. While in the supersymmetric case (γ̂1 = γ̂2 = γ̂3) this allows to arrange

mesons in massive N = 1 multiplets according to the fact that our embedding preserves

supersymmetry, this higher degree of degeneracy in the bosonic sector of the theory does

not have a clear explanation at the moment. In order to make definite statements about

the supersymmetry properties of the mesonic spectrum and supersymmetry breaking one

should study the fermionic sector. A useful strategy could be the bottom-up approach

described in [16]. We leave this interesting open problem for the future.

Our analysis shares some similarities with other cases considered in the literature.

First of all, we have found that a stable embedding of the probe brane can be realized

which is static and independent of the deformation parameters. This feature has been

already encountered for other brane configurations in deformed backgrounds. An exam-

ple is given by particular dynamical probe D3-branes (giant gravitons) which have been

first well understood in [26]. In fact, there it has been shown that giant gravitons exist

and are stable even in the absence of supersymmetry and their dynamics turns out to be

completely independent of the deformation parameters, being then equal to the one of the

undeformed theory. Moreover, since the giants wrap the same cycle inside the internal de-

formed space as our D7-brane does, their bosonic fluctuations encode the same dependence

on the deformation parameters observed in the mesonic spectrum coming from the D7.

A second similarity emerges with the case of flavors in non-commutative theories in-

vestigated in [10]. In fact, the non-trivial coupling between scalar and gauge modes that in

our case is induced by the deformation resembles the one which appears in the case of D7-

branes embedded in AdS5 × S5 with a B field turned on along spacetime directions. This

is not surprising since both theories can be obtained performing a TsT transformation of

AdS5×S5: If the TsT is performed in AdS one obtains the dual of a non-commutative the-

ory while the LM-Frolov picture is recovered if this transformation deforms the internal S5.
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The field theory dual to the (super)gravity picture we have considered can be obtained

by deforming the standard action for N = 4 super Yang-Mills coupled to massive N = 2

hypermultiplets by the ∗-product prescription [21]. In principle, in the supergravity dual

description this should correspond to performing a TsT deformation after the embedding

of the probe brane. However, as we have discussed, adding the flavor brane in the deformed

background or deforming the Karch-Katz D3-D7 configuration are commuting operations.

Therefore, the prescription we propose on the field theory side is consistent with what

we have done on the string theory side. It is important to stress that the choice of the

embedding we have made is crucial for the above reasoning.

What we obtain is a deformed gauge field theory with massive fundamental matter

parametrized by four real parameters γi and m. We can play with them in order to

break global U(1) symmetries, conformality and/or supersymmetry in a very controlled

way. In fact, in the quenching approximation a non-vanishing mass parameter related

to the location of the probe in the dual geometry breaks conformal invariance and one

of the U(1) global symmetries of the massless theory. On the other hand, the values of

the deformation parameters γi determine the degree of supersymmetry of the theory, as

already discussed. It is interesting to note that as we found on the gravity side, the three

deformation parameters play different roles in the fundamental sector of the theory. In

fact, γ2,3 always appear in the combination (γ2 − γ3), so that if γ2 = γ3 this sector gets

deformed only by γ1-dependent phases induced by the interaction with the adjoint matter.

In the supersymmetric case this particular behavior is manifest when using superspace

formalism since a non-trivial deformation appears only in the adjoint sector, whereas the

flavor superpotential remains undeformed.

Let us conclude mentioning some directions in which our work could be extended. We

have considered only the non-interacting mesonic sector. Expanding the D7-brane action

beyond the second order in α′ one can get informations on the interactions among the

mesons and understand how the deformation enters the couplings. Moreover, one could

extend our analysis to mesons with large spin in Minkowski, similarly to what has been

done in the ordinary, undeformed case [5].

Finally it could be very interesting to study in detail the other embeddings proposed

in [28] and in particular the one which seems to exhibit chiral symmetry breaking. More-

over, going beyond the quenching approximation has been representing an interesting sub-

ject since the recent efforts to study back-reacted models [15].

Acknowledgments

S.P. thanks M. Grisaru and M.P. thanks A. Butti, D. Forcella and A. Mariotti for useful

conversations. This work has been supported in part by INFN, PRIN prot. 2005024045-002

and the European Commission RTN program MRTN–CT–2004–005104.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200];

– 33 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2C38%2C1113
http://arxiv.org/abs/hep-th/9711200


J
H
E
P
0
4
(
2
0
0
8
)
0
3
7

S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109];

E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

[2] A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236].

[3] A. Karch, E. Katz and N. Weiner, Hadron masses and screening from AdS Wilson loops,

Phys. Rev. Lett. 90 (2003) 091601 [hep-th/0211107].

[4] O. Aharony, A. Fayyazuddin and J.M. Maldacena, The large-N limit of N = 2, 1 field

theories from three- branes in F-theory, JHEP 07 (1998) 013 [hep-th/9806159].

[5] M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT

with flavour, JHEP 07 (2003) 049 [hep-th/0304032].

[6] T. Sakai and J. Sonnenschein, Probing flavored mesons of confining gauge theories by

supergravity, JHEP 09 (2003) 047 [hep-th/0305049];

P. Ouyang, Holomorphic D7-branes and flavored N = 1 gauge theories, Nucl. Phys. B 699

(2004) 207 [hep-th/0311084];

D. Arean, D.E. Crooks and A.V. Ramallo, Supersymmetric probes on the conifold, JHEP 11

(2004) 035 [hep-th/0408210];

S. Kuperstein, Meson spectroscopy from holomorphic probes on the warped deformed conifold,

JHEP 03 (2005) 014 [hep-th/0411097];

T.S. Levi and P. Ouyang, Mesons and flavor on the conifold, Phys. Rev. D 76 (2007) 105022

[hep-th/0506021].

[7] X.-J. Wang and S. Hu, Intersecting branes and adding flavors to the Maldacena- Núñez
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